uridina

blog

LarLar / blog / uridina

Oct 26, 2023

uridina

Natureza volume 618, páginas

Nature volume 618, páginas 151–158 (2023) Citar este artigo

19k Acessos

1 Citações

423 Altmétrico

Detalhes das métricas

O adenocarcinoma ductal pancreático (PDA) é uma doença letal notoriamente resistente à terapia1,2. Isso é mediado em parte por um microambiente tumoral complexo3, baixa vascularização4 e aberrações metabólicas5,6. Embora o metabolismo alterado conduza à progressão do tumor, o espectro de metabólitos usados ​​como nutrientes pelo PDA permanece amplamente desconhecido. Aqui identificamos a uridina como um combustível para PDA em condições de privação de glicose, avaliando como mais de 175 metabólitos afetaram a atividade metabólica em 21 linhagens de células pancreáticas sob restrição de nutrientes. A utilização de uridina fortemente correlacionada com a expressão de uridina fosforilase 1 (UPP1), que demonstramos libera ribose derivada de uridina para abastecer o metabolismo central de carbono e, assim, apoiar o equilíbrio redox, sobrevivência e proliferação em células PDA restritas à glicose. Na PDA, a UPP1 é regulada pela sinalização KRAS-MAPK e aumentada pela restrição de nutrientes. Consistentemente, os tumores expressaram alta UPP1 em comparação com tecidos não tumorais, e a expressão de UPP1 se correlacionou com baixa sobrevida em coortes de pacientes com PCA. A uridina está disponível no microambiente tumoral e demonstramos que a ribose derivada da uridina é catabolizada ativamente nos tumores. Finalmente, a deleção de UPP1 restringiu a capacidade das células PDA de usar uridina e retardou o crescimento do tumor em modelos de camundongos imunocompetentes. Nossos dados identificam a utilização de uridina como um importante processo metabólico compensatório em células PDA privadas de nutrientes, sugerindo um novo eixo metabólico para a terapia de PDA.

O PDA continua sendo um dos cânceres mais mortais1,2. O microambiente do tumor PDA (TME) é um dos principais contribuintes para essa letalidade e é caracterizado por infiltração abundante de células imunes, expansão de fibroblastos estromais e a deposição associada de matriz extracelular. Isso leva a um aumento da pressão do líquido intersticial e ao colapso de arteríolas e capilares3,4,7. Esses fenômenos contribuem coletivamente para baixa saturação de oxigênio, resistência terapêutica, alterações metabólicas e heterogeneidade dentro do tumor em nível celular5,8,9. As células PDA que sobrevivem em tal TME desregulado por nutrientes e oxigênio exibem adaptações metabólicas que aumentam suas capacidades catabólicas e de eliminação10,11,12,13. Além disso, estudos recentes definiram fontes de nutrientes extrínsecas ao tumor para PDA, incluindo matriz extracelular, imune e metabólitos derivados do estroma14,15,16. Embora esses estudos tenham descoberto entradas discretas de nutrientes, telas abrangentes com o poder de identificar muitos desses condutores e mecanismos de nutrientes não foram realizadas anteriormente.

Para rastrear metabólitos que alimentam o metabolismo em células PDA privadas de nutrientes, aplicamos a plataforma de triagem fenotípica Biolog em 19 linhagens de células PDA humanas e 2 linhagens de células pancreáticas não malignas imortalizadas (células estreladas pancreáticas humanas e células pancreáticas humanas que expressam nestina) (Fig. 1a). Usamos a tela para avaliar a capacidade celular de capturar e metabolizar mais de 175 nutrientes em um formato de 96 poços sob condições limitantes de nutrientes (0 mM de glicose, 0,3 mM de glutamina e 5% de soro fetal bovino dialisado (FBS)). O painel de nutrientes incluiu energia de carbono e substratos de nitrogênio (Tabela Suplementar 1). A atividade metabólica foi avaliada monitorando a redução de um corante à base de tetrazólio, uma leitura do potencial redutor celular, a cada 15 minutos por aproximadamente 3 dias (Fig. 1a e Dados Estendidos Fig. 1a). As análises dos perfis de consumo de nutrientes revelaram vários metabólitos que, na ausência de glicose, foram utilizados em níveis semelhantes aos do controle positivo de glicose (Dados Estendidos Fig. 1b). Por exemplo, adenosina, uridina e vários açúcares foram utilizados pela maioria das linhagens celulares.

a, Esquema do ensaio de triagem do metabolismo de nutrientes e a correlação com a expressão gênica em linhagens de células PDA e tumores. b, Correlação de Spearman (r) entre a atividade metabólica relativa normalizada (RMA) para o catabolismo da uridina nos dados de triagem e os dados de expressão de mRNA de UPP1 de um conjunto de dados independente17 (16 linhagens de células PDA). As linhas de células UPP1-high são mostradas em negrito. c, A RMA em um subconjunto de linhagens de células PDA após suplementação com 1 mM de uridina por 3 dias em condição livre de glicose. d, Validação de PCR quantitativo (qPCR) da expressão de mRNA de UPP1 em um subconjunto de linhagens de células PDA. e, Immunoblot mostrando a expressão basal de UPP1 em linhagens de células PDA. Os borrões são representativos de três réplicas técnicas com resultados semelhantes. f, Correlação de Spearman (r) entre a análise de densitometria de proteína do blot em e e a expressão de mRNA de UPP1 nas oito linhagens de células PDA destacadas em e. g, Os 20 principais genes expressos diferencialmente pelas linhagens de células PDA que foram identificadas como grandes consumidores/metabolizadores de uridina em comparação com os consumidores de baixo teor de uridina da tela do metabolismo de nutrientes. Fonte de dados: Cancer Cell Line Encyclopedia (CCLE). Os dados em c, d são a média ± sd Consulte a seção Métodos 'Estatísticas e reprodutibilidade' para obter informações adicionais.

175 metabolites by 19 PDA cell lines and 2 non-PDA pancreatic cell lines was measured every 15 min for ~3 days (74.5 h) using the Biolog OmniLog device. The assay readout, RMA, was correlated with the expression level of metabolic genes in cell lines; human PDA data were used for subsequent analyses. Nutrient-deficient medium, no glucose, 0.3 mM glutamine and 5% dialysed FBS. c, n = 4 biologically independent samples per group. Statistical significance was measured by multiple unpaired two-tailed t-tests (two-stage step-up method) comparing RMA from cells in basal medium vs 1 mM uridine medium (both glucose-free), ****P < 0.0001. The experiments were performed twice with similar results. d, n = 4 biologically independent samples per cell line. The experiment was performed once./p> 0.9999; no glucose/uridine and 1 mM ribose, P = 0.3025; no glucose/uridine and 10 mM ribose, ****P < 0.0001). ASPC1 (comparison between no glucose/uridine and no glucose + 1 mM uridine, ****P < 0.0001; no glucose/uridine and 1 mM glucose/no uridine, ****P < 0.0001; no glucose/uridine and 0.1 mM ribose, P = 0.9974; no glucose/uridine and 1 mM ribose, *P = 0.0103; no glucose/uridine and 10 mM ribose, ****P < 0.0001). The experiment was performed once. b,c, n = 3 biologically independent samples. Statistical significance was measured using two-tailed unpaired t-test. Intracellular: comparison between no uridine and 1 mM uridine: ***P = 0.0005 (uridine), ****P < 0.0001 (uracil); extracellular: comparison between no uridine and 1 mM uridine: ****P < 0.0001 (uridine), **P = 0.008 (uracil). d–f, n = 3 biologically independent samples per cell line. ‘Others’ indicates M other than M+0 or M+5, where applicable. Bars shown for PATU8988S are same as the WT bars (where applicable) for that cell line in the Extended Data Fig. 5. Tracing experiments were performed twice in these cells with similar results. g, Number of samples: sub-Q, tumours from 3 mice injected on the left and right flanks; ortho, tumours from 4 mice. Mode of uridine injection is intratumoural for sub-Q and intraperitoneal for ortho. h, Median concentration of uridine = 24.1 µM; median concentration of uracil = 90.2 µM; n = 22 biologically independent TIF samples. i, Median concentration of glucose = 3.71 mM (plasma) and 0.63 mM (TIF). n = 8 biologically independent plasma samples and 8 TIF samples extracted from 8 tumour samples from same mice. These samples are from the control group of the study in Fig. 4a. Statistical significance was measured with two-tailed unpaired t-test with Welch's correction, ****P < 0.0001. j,k, j shows the mass isotopologue distribution in uridine and k shows in the indicated metabolites. n = 4 biologically independent samples per group per cell line. ‘Others’ indicates M other than M+0 or M+5, where applicable. Data in a–k are shown as mean ± s.d. The metabolomics experiments (b–k) were performed once./p> 0.9999 and P > 0.9999 for WT, 1A and 1B groups, respectively. The experiments were performed three times with similar results. c, n = 4 biologically independent samples per group per cell line. Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. PATU8988S, comparison between no uridine (−) and 1 mM uridine (+): ****P < 0.0001, P > 0.9999 and P = 0.9599 for WT, 1A and 1B groups, respectively. ASPC1, comparison between no uridine (−) and 1 mM uridine (+): ****P < 0.0001, P = 0.9977 and P = 0.6537 for WT, 1A and 1B groups, respectively. The experiments were performed twice with similar results. d, n = 3 biologically independent samples per group. Statistical significance was measured using one-way ANOVA with Dunnett's multiple comparisons test. Comparison between WT and clonal cells 1A or 1B: ****P < 0.0001 (PATU8988S) and ***P = 0.0003 (ASPC1). Data are part of the metabolomics experiments shown in Extended Data Fig. 5a–c. The metabolomics experiment was performed once. e, n = 3 biologically independent samples per group. ‘Others’ indicates M other than M+0 or M+5, where applicable. Data are part of the metabolomics experiments shown in Extended Data Fig. 5e,h,j for ASPC1. The metabolomics experiment was performed once. f, Statistical significance was measured using two-tailed unpaired t-test with Welch's correction. Number of samples and statistical comparison: GSE62452 (NT, 61 vs PDA, 69, ***P = 0001), GSE71729 (middle: NT, 46 vs PDA, 145, *P = 0.0466), GSE71729 (right: primary, 145 vs liver met, PDA, 25, ****P < 0.0001). Box plot statistics: GSE42452 (NT: minimum = 3.582, maximum = 5.633, 25th percentile = 4.036, 75th percentile = 4.504, median = 4.262; PDA: minimum = 3.853, maximum = 5.989, 25th percentile = 4.37, 75th percentile = 4.843, median = 4.535); GSE71729 (NT: minimum = 2.18, maximum = 4.402, 25th percentile = 2.901, 75th percentile = 3.469, median = 3.139; PDA: minimum = 2.293, maximum = 4.725, 25th percentile = 3, 75th percentile = 3.657, median = 3.339); GSE71729 (primary: minimum = 2.293, maximum = 4.725, 25th percentile = 3, 75th percentile = 3.657, median = 3.339; liver metastasis: minimum = 3.306, maximum = 5.768, 25th percentile = 3.564, 75th percentile = 4.498, median = 4.023). g, Representative images from patient 1 of 3 tumour tissues. PanCK, pan-cytokeratin, stain indicates tumour cells. i, Number of samples: UPP1-low, 144; UPP1-high, 144. j, Number of samples: no alteration, 43; G12D, 42. Statistical significance was measured using two-tailed unpaired t-test with Welch's correction, **P = 0.0029. Box plot statistics: no alteration: minimum = 7.797, maximum = 10.66, median = 9.019, 25th percentile = 8.307, 75th percentile = 9.53; KRASG12D: minimum = 8.154, maximum = 11.3, median = 9.385, 25th percentile = 9.019, 75th percentile = 9.905. k, n = 3 biologically independent samples per cell line. Statistical significance was measured using two-tailed unpaired t-test. Comparison between Dox (−) and (+) in iKras* cell A9993: ***P = 0.0002; in iKras cell 8905: **P = 0088. The experiment was performed once. l, Vinculin is used as a loading control. The experiment was performed once. m, 3 biologically independent samples per group. Statistical significance was measured using two-tailed unpaired t-test. Comparison between cells cultured in uridine/glucose-containing medium with and without trametinib treatment: ****P < 0.0001; comparison between cells treated with and without trametinib in the presence of glucose but no uridine: ****P < 0.0001; comparison between cells treated with and without trametinib in the presence of uridine and no glucose: ****P < 0.0001; comparison between cells cultured with no uridine/glucose with and without trametinib treatment: ****P < 0.0001. The experiment was performed once. n, Vinculin is used as a loading control. The experiments were performed twice with similar results. o, Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. n = 4 biologically independent samples per group per cell line. PATU8988S (comparison between cells cultured with and without trametinib in the absence of uridine: ****P < 0.0001, and with uridine supplementation: ****P < 0.0001); DANG (comparison between cells cultured with and without trametinib in the absence of uridine: P = 0.9967, and with uridine supplementation: ****P = 0.0001); ASPC1 (comparison between cells cultured with and without trametinib in the absence of uridine: P = 0.9987, and with uridine supplementation: ***P = 0.0001. The experiment was performed once. Data in b–e,k,m,o are mean ± s.d./p> 25 tissues compared). c. Data obtained from the Human Protein Atlas (URL for ‘Normal’ - https://www.proteinatlas.org/ENSG00000183696-UPP1/tissue/pancreas; PDA – https://www.proteinatlas.org/ENSG00000183696-UPP1/pathology/pancreatic+cancer#img). d. Sample size, n: NT = 19, tumour = 408 (bladder cancer, TCGA); NT = 5, tumour = 154 (glioblastoma, TCGA); NT = 44, tumour = 520 (head and neck cancer, TCGA); NT = 59, tumour = 551 (lung cancer, TCGA); NT = 11, tumour = 184 (oesophageal cancer, TCGA); NT = 52, tumour = 497 (prostate cancer, TCGA); NT = 41, tumour = 452 (colon cancer); health colon mucosa = 50, distant colon = 98, tumour = 98 (colon cancer, GSE44076). NT – non-tumour/adjacent normal tissue. Data (a-b, f) shown as mean ± s.d. The experiments were performed three times with similar results. Box plot statistics – TCGA, bladder carcinoma (primary: minima = 5.83, maxima = 13.5, median = 9.77, 25th percentile = 9.015, 75th percentile = 10.47; normal: minima = 6.61, maxima = 12.43, median = 8.35, 26th percentile = 8.03, 75th percentile = 9.59); glioblastoma multiforme (primary: minima = 5.71, maxima = 11.84, median = 9.585, 25th percentile = 8.79, 75th percentile = 10.143; normal: minima = 7.04, maxima = 7.63, median = 7.4, 25th percentile = 7.36, 75th percentile = 7.61); head and neck squamous cell carcinoma (primary: minima = 6.59, maxima = 15.64, median = 10.75, 25th percentile = 9.787, 75th percentile = 11.565; normal: minima = 6.38, maxima = 13.73, median = 10.42, 25th percentile = 8.672, 75th percentile = 11.065); lung adenocarcinoma (primary: minima = 6.45, maxima = 13.44, median = 9.8, 25th percentile = 9.13, 75th percentile = 10.49; normal: minima = 8.3, maxima = 11.39, median = 9.3, 25th percentile = 8.945, 75th percentile = 9.93); esophageal carcinoma (primary: minima = 6.7, maxima = 13.08, median = 9.26, 25th percentile = 8.578, 75th percentile = 10.21; normal: minima = 6.17, maxima = 12.39, median = 7.62, 25th percentile = 6.7, 75th percentile = 8.26); prostate adenocarcinoma (primary: minima = 3.96, maxima = 9.69, median = 6.58, 25th percentile = 5.98, 75th percentile = 7.14; normal: minima = 4.56, maxima = 8.62, median = 6.97, 25th percentile = 6.447, 75th percentile = 7.24); colon cancer (primary: minima = 6.41, maxima = 12.96, median = 8.535, 25th percentile = 8.068, 75th percentile = 9.07; normal: minima = 7.76, maxima = 11.29, median = 9.57, 25th percentile = 9.09, 75th percentile = 9.92). Colon cancer (GSE44076, primary: minima = 4.564, maxima = 7.608, median = 5.917, 25th percentile = 5.487, 75th percentile = 6.405; normal: minima = 4.568, maxima = 9.154, median = 7.18, 25th percentile = 6.781, 75th percentile = 7.824; healthy colon mucosal cells: minima = 5.884, maxima = 8.279, median = 7.529, 25th percentile = 7.153, 75th percentile = 7.74). Statistical significance was tested using two-sided Wilcoxon or Kruskal-Wallis tests./p>0.9999). h. n = 3 biologically independent samples per group. Statistical significance was measured with one-way ANOVA with Tukey's multiple comparisons test. Comparisons between groups (from left to right): ****P < 0.0001, ****P < 0.0001, ****P < 0.0001 and ****P < 0.0001. The experiments (e, g, h) were performed once with similar results on UPP1 displayed by the three cell lines. i. n = 3 biologically independent samples per group. This blot was run on the same gel as Fig. 3n hence the first two columns (separated by a box) overlap between the two blots. j. Blots (c,i) are representative of two independent experiments; blot e experiment was done once. k. n = 3 biologically independent samples per group. The statistical significance (P < 0.05) was determined using limma package version 3.38.3 in R. l. Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. n = 4 biologically independent samples per group. PATU8988S (comparison between cells cultured with and without trametinib in the absence of uridine: ****P < 0.0001, and with uridine supplementation: ****P < 0.0001); DANG (comparison between cells cultured with and without trametinib in the absence of uridine: **P = 0.0055, and with uridine supplementation: ***P = 0.0009); ASPC1 (comparison between cells cultured with and without trametinib in the absence of uridine: P = not significant, and with uridine supplementation: ****P = 0.0006). Data (b, e, g-h, l) shown as mean ± s.d./p>0.9968), and sgV and sg3 P = ns (0.9583). Data (a, b, d, e) shown as mean ± s.d; horizontal bars in h represent mean value./p>